2,581 research outputs found

    Prospects of Low-Mass Dielectron Measurements in ALICE with an upgraded Central Barrel Detector

    Get PDF

    PLoS One

    Get PDF

    Molecular Basis for poly(A) RNP Architecture and Recognition by the Pan2-Pan3 Deadenylase

    No full text
    The stability of eukaryotic mRNAs is dependent on a ribonucleoprotein (RNP) complex of poly(A)-binding proteins (PABPC1/Pab1) organized on the poly(A) tail. This poly(A) RNP not only protects mRNAs from premature degradation but also stimulates the Pan2-Pan3 deadenylase complex to catalyze the first step of poly(A) tail shortening. We reconstituted this process in vitro using recombinant proteins and show that Pan2-Pan3 associates with and degrades poly(A) RNPs containing two or more Pab1 molecules. The cryo-EM structure of Pan2-Pan3 in complex with a poly(A) RNP composed of 90 adenosines and three Pab1 protomers shows how the oligomerization interfaces of Pab1 are recognized by conserved features of the deadenylase and thread the poly(A) RNA substrate into the nuclease active site. The structure reveals the basis for the periodic repeating architecture at the 3' end of cytoplasmic mRNAs. This illustrates mechanistically how RNA-bound Pab1 oligomers act as rulers for poly(A) tail length over the mRNAs' lifetime.We would like to thank ... the MPIB cryo-EM, and core facilities ..

    Colour Reconnections in Quark and Gluon Jets in Herwig 7

    Get PDF
    Major event generators deviate significantly in their description of quark and gluon initiated jets. The modelling of these is particularly sensitive to the colour reconnection model used in the cluster hadronization model in the event generator Herwig. However, up to now, observables sensitive to the light flavour of jets have not been widely used in the construction and tuning of event generators. The scheme used in Herwig and changes within it are investigated using observables in e +e − and pp collisions, which are expected to discriminate quark and gluon jets

    A construction of Frobenius manifolds with logarithmic poles and applications

    Full text link
    A construction theorem for Frobenius manifolds with logarithmic poles is established. This is a generalization of a theorem of Hertling and Manin. As an application we prove a generalization of the reconstruction theorem of Kontsevich and Manin for projective smooth varieties with convergent Gromov-Witten potential. A second application is a construction of Frobenius manifolds out of a variation of polarized Hodge structures which degenerates along a normal crossing divisor when certain generation conditions are fulfilled.Comment: 46 page

    Cryo-Preparation and Planar Magnetron Sputtering for Low Temperature Scanning Electron Microscopy

    Get PDF
    Cryo-preparation is a reliable technique for the structural investigation of food products in low temperature scanning electron microscopy (SEM). Artifacts, such as, the segregation of water/non-water ingredients, occur during the freezing process by the crystallization of ice; they can be helpful for correct interpretation of visualized details, e.g., the detection of water containing compartments. The size of the segregation structures depends on water concentration and specimen thickness. The condensation of water vapor (ice contamination) is influenced by the specimen temperature and the partial pressure of the water inside the vacuum system. Furthermore, the evaporation (sublimation, etching) of specimen water can be regulated by monitoring the specimen temperature. Sublimation under SEM observation, i.e., in situ etching at low acceleration voltage, allows the progress of etching to be observed continuously, prior to the coating of the specimen inside a dedicated cryo-preparation system attached to the SEM. Coating of specimens provides superior structural resolution compared with the observation of uncoated samples. A coating layer of platinum ( ~ 1-2 nm thick), deposited on a cold substrate by planar magnetron sputtering, is almost homogenous and has a density close to that of the solid metal. Its use allows bulk biological specimens to be observed in low temperature SEM with a structural resolution up to the visualization of transmembrane proteins

    Structure of a Cytoplasmic 11-Subunit RNA Exosome Complex

    No full text
    The RNA exosome complex associates with nuclear and cytoplasmic cofactors to mediate the decay, surveillance, or processing of a wide variety of transcripts. In the cytoplasm, the conserved core of the exosome (Exo10) functions together with the conserved Ski complex. The interaction of S. cerevisiae Exo10 and Ski is not direct but requires a bridging cofactor, Ski7. Here, we report the 2.65 angstrom resolution structure of S. cerevisiae Exo10 bound to the interacting domain of Ski7. Extensive hydrophobic interactions rationalize the high affinity and stability of this complex, pointing to Ski7 as a constitutive component of the cytosolic exosome. Despite the absence of sequence homology, cytoplasmic Ski7 and nuclear Rrp6 bind Exo(10) using similar surfaces and recognition motifs. Knowledge of the interacting residues in the yeast complexes allowed us to identify a splice variant of human HBS1-Like as a Ski7-like exosome-binding protein, revealing the evolutionary conservation of this cytoplasmic cofactor

    Rhizobia contribute to salinity tolerance in common beans (Phaseolus vulgaris L.)

    Get PDF
    Rhizobia are soil bacteria that induce nodule formation on leguminous plants. In the nodules, they reduce dinitrogen to ammonium that can be utilized by plants. Besides nitrogen fixation, rhizobia have other symbiotic functions in plants including phosphorus and iron mobilization and protection of the plants against various abiotic stresses including salinity. Worldwide, about 20% of cultivable and 33% of irrigation land is saline, and it is estimated that around 50% of the arable land will be saline by 2050. Salinity inhibits plant growth and development, results in senescence, and ultimately plant death. The purpose of this study was to investigate how rhizobia, isolated from Kenyan soils, relieve common beans from salinity stress. The yield loss of common bean plants, which were either not inoculated or inoculated with the commercial R. tropici rhizobia CIAT899 was reduced by 73% when the plants were exposed to 300 mM NaCl, while only 60% yield loss was observed after inoculation with a novel indigenous isolate from Kenyan soil, named S3. Expression profiles showed that genes involved in the transport of mineral ions (such as K+, Ca2+, Fe3+, PO43−, and NO3−) to the host plant, and for the synthesis and transport of osmotolerance molecules (soluble carbohydrates, amino acids, and nucleotides) are highly expressed in S3 bacteroids during salt stress than in the controls. Furthermore, genes for the synthesis and transport of glutathione and γ-aminobutyric acid were upregulated in salt-stressed and S3-inocculated common bean plants. We conclude that microbial osmolytes, mineral ions, and antioxidant molecules from rhizobia enhance salt tolerance in common beans
    • …
    corecore